Tikhonov regularization based on generalized Krylov subspace methods
نویسندگان
چکیده
We consider Tikhonov regularization of large linear discrete ill-posed problems with a regularization operator of general form and present an iterative scheme based on a generalized Krylov subspace method. This method simultaneously reduces both the matrix of the linear discrete ill-posed problem and the regularization operator. The reduced problem so obtained may be solved, e.g., with the aid of the singular value decomposition. Also, Tikhonov regularization with several regularization operators is discussed.
منابع مشابه
Sylvester Tikhonov - regularization methods in image restoration
In this paper, we consider large-scale linear discrete ill-posed problems where the right-hand side contains noise. Regularization techniques such as Tikhonov regularization are needed to control the effect of the noise on the solution. In many applications such as in image restoration the coefficient matrix is given as a Kronecker product of two matrices and then Tikhonov regularization proble...
متن کاملروشهای تجزیه مقادیر منفرد منقطع و تیخونوف تعمیمیافته در پایدارسازی مسئله انتقال به سمت پائین
The methods applied to regularization of the ill-posed problems can be classified under “direct” and “indirect” methods. Practice has shown that the effects of different regularization techniques on an ill-posed problem are not the same, and as such each ill-posed problem requires its own investigation in order to identify its most suitable regularization method. In the geoid computations witho...
متن کاملGreedy Tikhonov regularization for large linear ill-posed problems
Several numerical methods for the solution of large linear ill-posed problems combine Tikhonov regularization with an iterative method based on partial Lanczos bidiagonalization of the operator. This paper discusses the determination of the regularization parameter and the dimension of the Krylov subspace for this kind of methods. A method that requires a Krylov subspace of minimal dimension is...
متن کاملA new framework for multi-parameter regularization
This paper proposes a new approach for choosing the regularization parameters in multiparameter regularization methods when applied to approximate the solution of linear discrete ill-posed problems. We consider both direct methods, such as Tikhonov regularization with two or more regularization terms, and iterative methods based on the projection of a Tikhonov-regularized problem onto Krylov su...
متن کاملModulus-based iterative methods for constrained Tikhonov regularization
Tikhonov regularization is one of the most popular methods for the solution of linear discrete ill-posed problems. In many applications the desired solution is known to lie in the nonnegative cone. It is then natural to require that the approximate solution determined by Tikhonov regularization also lies in this cone. The present paper describes two iterative methods, that employ modulus-based ...
متن کامل